
WHITE PAPER

embenatics Interface Description

This white paper introduces the embenatics tool chain, specially the description of
inter-process communication interfaces and data types based on a simple MP3
player example.

Introduction to the Sample Application
In this series of white papers, a simple MP3 player is taken as a sample application to show the
various features and working steps of the embenatics tool suite. The figure below shows the building
blocks for a simple MP3 player example. A short description of the blocks will make it easier to
understand the basic function of the player. Each white paper will focus on different subjects of the
sample application design to highlight the specific topic of the paper.

UI
Unit

Storage
Unit

Renderer
Unit

Figure 1 Block Diagram of the MP3 Sample Application

The UI Unit handles the user interaction, which comprises user commands as well as displays status
information, like the current track that is playing, the list of selected titles, etc. Access to the
Storage Unit is used to provide all information about the available music tracks. The UI Unit
interfaces with the Renderer Unit to pass on user commands, as well as to get the current status of
the player.

www.embenatics.com
© 2011

http://www.embenatics.com/

WHITE PAPERembenatics Interface Description

The Storage Unit keeps track of the available music titles and provides access to the stored MP3
files. It interfaces with the UI Unit to provide track information. The interface with the Renderer Unit
provides access to the coded music data that should be replayed.

The Renderer Unit is responsible for handling the music track to be played, managing a play list of
titles, displaying information on the state of the player and converting the coded MP3 data into
audible music. It receives track information and control commands via the UI Unit interface. Access
to the MP3 data is obtained by interfacing with the Storage Unit.

In this white paper, the MP3 player application is implemented by five threads. Figure 2 illustrates
the thread model of the MP3 player in a UML-like notation. Each thread is displayed showing its
name and the interfaces implemented by each thread. The RPC based inter-process communication
relationship among the threads is indicated by the arrows between the threads, e.g. the UI thread
accesses services of the display_control interface of the DISPLAY thread.

DISPLAY

display_control.mbid

RENDERER

renderer_control.mbid

STORAGE

storage_data.mbid
storage_info.mbid

KEYPAD

keypad_control_mbid

UI

ui_control.mbid
renderer_status_listener.mbid

<<uses>>

<<uses>>

<<uses>> <<uses>>

<<uses>>

<<uses>>

<<uses>>

Figure 2 Thread model of the MP3 player

It has to be stated that the main intention of this example is to highlight the features of the
embenatics foundation layer software as well as the capabilities of the tool chain. With this in mind,
it should be acceptable that some design decisions are a bit off the most efficient and optimal
solution software developers can think of.

Revision 1.2.0 Page 2 of 14

WHITE PAPERembenatics Interface Description

Introducing embenatics Interface Descriptions - MBID
One of the key design principles using the embenatics tool suite is to describe all inter-process
communication interfaces by using a dedicated interface description language (IDL). All building
blocks that belong to the same interface are grouped by a so-called interface description document,
called MBID. An MBID will hold the IDL which declares communication services, data types and
definitions and will act as a single source input document from which development and diagnostic
documents and files are derived. All generated documents are of great use throughout the
development process of the target system. More details about the embenatics design methodology
and tool chain can be found in another publication of this series of whitepapers [embenatics Design
Methodology].

The embenatics tool suite not only defines the interface description language but is also linked to
the easy to use accompanying editor mbEdit. This editor facilitates the creating and reusing of
communication interfaces and assists in organizing these interfaces in different projects. The editor
mbEdit is an Eclipse™-based tool which will seamlessly integrate and utilize the Eclipse™
workbench and other Eclipse™ plug-ins. The Eclipse™ platform is Java™-based and therefore runs
on multiple PC operating systems like Windows™, Linux™ and MacOS™.

As we will see in greater detail in this document, mbEdit will be used to define inter-process
communication services, data types and data definitions that are used to directly communicate
between different threads of the system utilizing an RPC mechanism. More detailed information
about the details of inter-process communication using embenatics foundation layer software can
be found in another publication of this series of white papers [mbLay Inter-Process Communication
Model].

In addition to services and data types, the user could also create supplemental diagnostic
information, which will prove helpful for debugging and testing purposes when bringing the system
to life. MBID documents can be organized in a similar fashion as header files that are commonly
used in programming languages. This means that one MBID can reuse definitions of types and
services of another MBID by referring to that element.

Encapsulating services and corresponding data types in MBID documents help streamline the inter-
face design and will lay the foundation for the design of inter-process communication channels. In-
terfaces as well as the usage of system resources, i.e. threads, semaphores, memory, etc. are
defined in description documents as part of the embenatics design methodology. This centralized
approach will be used throughout the system design process. More information about the embenat-
ics system description procedure and tools can be found in another publication of this series of white
papers [embenatics System Description].

Once all MBID documents belonging to a system are created, they are fed to the embenatics
generator tool mbGen. This tool will create all necessary artifacts that are needed for system setup,
software development, as well as diagnostics and testing.

Revision 1.2.0 Page 3 of 14

http://embenatics.com/files/white_paper_embenatics_system_description.pdf
http://embenatics.com/files/white_paper_mblay_inter_process_communication_model.pdf
http://embenatics.com/files/white_paper_mblay_inter_process_communication_model.pdf
http://embenatics.com/files/white_paper_embenatics_design_methodology.pdf
http://embenatics.com/files/white_paper_embenatics_design_methodology.pdf

WHITE PAPERembenatics Interface Description

A Closer Look at Interface Descriptions for the MP3 Player
Based on our MP3 player example briefly described above, we will now take a closer look at how the
interfaces are described in detail using some meaningful examples. As you can see in Figure 2, a set
of MBIDs has been designed to fulfil the inter-process communication needs of the sample system.
We will offer a quick glance at some of them to highlight some services and data types that are well
suited to explain the details of using interface descriptions.

Defining Data Types
Basis for the definition of custom data types is a number of default definitions that are already
declared by the embenatics tool suite. These default types comprise signed and unsigned types of
various data sizes and are embedded in a dedicated MBID called mb_types.mbid which is a part of
the embenatics products.

With this in mind, we are ready to create custom data types needed for the MP3 player example. In
the following sections, we will examine the interface that resides between the UI and the Storage
unit called storage_info.mbid, also shown in Figure 2. The main purpose of this interface is to
provide access to the detailed information of the different music tracks that are managed by the
Storage unit. One of those pieces of information is a bitmap picture that represents the cover art
which belongs to a certain music track. In our example exist three different sizes of that bitmap
picture, all squares, for different display situations. To keep the data transfer chunks a reasonable
sizes, we have scaled the pictures into a set of rows for the different sizes. The following example
shows the definition of a data structure holding the pixels for one row for the smallest bitmap size.

// data type to hold a row for a small cover size
STRUCTURE SML_COVER_ROW {

// row data
ITEM U16 >mb_types.mbid< data[SML_COVER_SIZE];

};

As we can see the IDL representation of that data type is quite straight forward. A keyword declares
the type of the data as a structure followed by the type name SML_COVER_ROW. The structure itself
consists of an array of type U16 representing the pixel data itself. The type U16 – 16 bit unsigned - for
the pixel data has been imported from the default type interface description file mb_types.mbid, as
explained above. For the size of the array we used a dedicated definition which stands for the
number of pixels for a row. See the above IDL statement for that definition.

// small cover size
DEFINITION SML_COVER_SIZE 32;

All declarations can be preceded by explanatory comments as an option. We see later in this
document, examples of the data logs and how these comments are very helpful during the diagnosis
phase.
When the above IDL declaration will be fed into the embenatics generator mbGen, the following C
constructs will be found in the corresponding header file.

Revision 1.2.0 Page 4 of 14

WHITE PAPERembenatics Interface Description

#define STORAGE_INFO_SML_COVER_SIZE 32 // small cover size

/*----------
| data type to hold a row for a small cover size
/----------*/
typedef struct
{

U16 data[STORAGE_INFO_SML_COVER_SIZE]; // row data
} STORAGE_INFO_SML_COVER_ROW_type;

Pre- and Postfixes
We can see in the previous example code snippet that the generated header file content differs from
the IDL definition because the type name of the structure and the definition name have been
extended. MBID files allow the definition of so called prefixes and postfixes that are valid for all
relevant elements for the whole document. Prefixes are put in front of all element names and help to
avoid duplicate declarations. In our MP3 Player MBID files we have set the prefix value always to the
respective interface name; i.e. STORAGE_INFO for the example above. Postfixes are only applicable
for new type declarations and are appended to the given element name. Our default postfix value
for the MP3 Player MBIDs is set to type.
Pre- and postfixes help the user to organize the design of independent interfaces in multiple MBID
documents. They can be used to create a type of namespace for MBID documents and therefore
avoid compilation problems due to duplicate declarations.

Variable Arrays
To form a full cover picture, more than one pixel row is needed. Therefore the next data type that
has been defined collects a set of pointers for all rows of an album cover picture in one array. The
corresponding IDL for that data type is shown below.

// data type to hold small cover size, or a fraction of it
STRUCTURE SML_COVER {

// rows
ITEM SML_COVER_ROW * rows[~SML_COVER_SIZE];

};

At first glance that definition looks like any other, but a closer look shows you this key character ~
(tilde) , that is used for defining the array’s size. This is a special feature of the embenatics tool suite
that we call a “variable array” meaning that the number of actual filled array elements can vary
between zero and the maximum array size. To support that behaviour, the generator adds an
additional counter element to the data structure that will hold the number of present array
elements. In our example this feature is used to read fractions of the album cover data to keep
memory allocation at a lower level. See below the C constructs that have been generated by mbGen
to reflect that data structure.

Revision 1.2.0 Page 5 of 14

WHITE PAPERembenatics Interface Description

/*----------
| data type to hold small cover size, or a fraction of it
/----------*/
typedef struct
{

STORAGE_INFO_SML_COVER_ROW_type * rows[STORAGE_INFO_SML_COVER_SIZE]; // rows
/* variable array control starts here */
U8 rows_c_;

} STORAGE_INFO_SML_COVER_type;

In addition to the array element, the counter rows_c_ has been generated. For such elements a
simple macro is provided to support convenient access for the programmer. Of course, when
allocating memory for such a data type, the full size of the array has to be taken into account; but,
when transferring data of that type between two different platforms, only the required amount of
data is transported. That saves time and bandwidth in case of low data volume situations.

Unions
As stated above, our MP3 Player example has to deal with three different sizes of album cover art
pictures. Therefore, similar to the data types for a small cover defined above, data types for medium
and large covers exist. To show another feature of the embenatics tool suite, we group those data
types in a union as a container. See the following IDL for that data type.

UNION COVER_DATA {
// small cover
ITEM TAG[TAG_SMALL_COVER,1] SML_COVER * sml_cover_bmp;
// medium cover
ITEM TAG[TAG_MEDIUM_COVER,2] MED_COVER * med_cover_bmp;
// large cover
ITEM TAG[TAG_LARGE_COVER,3] LRG_COVER * lrg_cover_bmp;

};

What we see in this example is a tag declaration for each item of the union. It consists of a name and
a value. When using that data type during programming, the tag helps to identify the different data
types collected in that union. The user is free to choose tag name and value. Nevertheless, the tool
chain can do that in an automated fashion. As a result, the generator will add a tag element to the
data structure that can be accessed by a simple macro for convenience. See below the outcome of
the generator.

typedef struct
{

union
{

STORAGE_INFO_SML_COVER_type * sml_cover_bmp; // small cover
STORAGE_INFO_MED_COVER_type * med_cover_bmp; // medium cover
STORAGE_INFO_LRG_COVER_type * lrg_cover_bmp; // large cover

} COVER_DATA_union;
/* union control tag */
U8 COVER_DATA_t_;

} STORAGE_INFO_COVER_DATA_type;

Revision 1.2.0 Page 6 of 14

WHITE PAPERembenatics Interface Description

/* union tags defined for STORAGE_INFO_COVER_DATA_type starts here */
#define TAG_SMALL_COVER 1
#define TAG_MEDIUM_COVER 2
#define TAG_LARGE_COVER 3

Optional Elements and Value Mappings
As a last example for data types being used in the MP3 Player, we take a closer look at the music
track information and how it is represented by the corresponding data type. Track information is
extracted from the MP3 meta data fields, which describe e.g. artist name, song title, etc. What
information in particular is present in the MP3 file can not be anticipated and solely depends on the
MP3 file itself. To reflect that situation in the data structure we declare such elements as optional by
using the keyword OPT. See below the example data type for the track information, represented by
the IDL.

// data type to hold music track information
STRUCTURE TRACK_INFO {

// optional album name
ITEM OPT STRING[MAX_STR_LEN] album;
// optional artist name
ITEM OPT STRING[MAX_STR_LEN] artist;
// optional title name
ITEM OPT STRING[MAX_STR_LEN] title;
// optional track number
ITEM OPT U16>mb_types.mbid< track_no;
// title playing time
ITEM OPT U32>mb_types.mbid< time@TRACK_TIME;
// cover availability status
ITEM U8>mb_types.mbid< has_cover@COVER_STATUS;

};

Every item in a data structure that is declared as optional has a dedicated valid flag that represents
whether the data for that item is valid and present or not. The generator takes care of that and
creates such flags at the end of the data structure. Again, simple macros are available for easy
access for the programmer.
Another small detail in the above data structure can be seen by looking at the string type,
represented by the keyword STRING. The embenatics tool suite supports a dedicated type for zero
terminated strings. This allows for the efficient handling of the transfer of such elements across
system boundaries, making it possible that only the required number of string characters are
exchanged instead of the maximum reserved memory space. For diagnostic and display purposes,
string types will be given special treatment to be presented in a user friendly and readable format.
Next we take a look at the generated C constructs that have been created for that data structure.

Revision 1.2.0 Page 7 of 14

WHITE PAPERembenatics Interface Description

/*----------
| data type to hold music track information
/----------*/
typedef struct
{

C8 album[STORAGE_INFO_MAX_STR_LEN+1]; // optional album name
C8 artist[STORAGE_INFO_MAX_STR_LEN+1]; // optional artist name
C8 title[STORAGE_INFO_MAX_STR_LEN+1]; // optional title name
U16 track_no; // optional track number
U32 time; // title playing time
U8 has_cover; // cover availability status
/* optional element control starts here */
U8 album_v_ :1;
U8 artist_v_ :1;
U8 title_v_ :1;
U8 track_no_v_ :1;
U8 time_v_ :1;

} STORAGE_INFO_TRACK_INFO_type;

The other main topic in this chapter is value mapping. Value mappings can be assigned to data
elements for an increased readability during the test and diagnostic phase. They are separately
defined and assigned where needed by using the @ key character. In the above example we
demonstrated that for the time and has_cover elements of the data structure. Both mapping
declarations are shown below.

// track time mapping
MAPPING TRACK_TIME DEC {

// short title
RANGE 0 120;
// normal title
RANGE 121 360;
// long title
RANGE 361 1800;

};

// cover status mapping
MAPPING COVER_STATUS HEX {

// has cover
DEFINITION HAS_COVER 1;
// has no cover
DEFINITION NO_COVER 2;

};

TRACK_TIME is a simple example for a range mapping. A range is defined by a minimum and
maximum value. That means if the data value for that element falls between the defined range
settings, the associated comment will be assigned to that value.
Another example for a discrete value mapping can be seen for COVER_STATUS. Here the value has to
exactly match the defined value, should the comment be assigned to it. Discrete value mapping
declarations result also in definitions contained in the generated C-header files, which can be used
by the programmer to assign these values to variables in the code.
In addition, the numerical representation of the target data item can be adjusted using mappings. In
the above example a decimal and a hexadecimal representation has been set. There are other
mapping strategies available, like pattern and limiter matching, which are not utilized in this

Revision 1.2.0 Page 8 of 14

WHITE PAPERembenatics Interface Description

example. The outcome of this matching attribute can be seen when logging such elements and
displaying them using the embenatics tool suite target logger mbLog.

Figure 3 Decoded Data Type Example

In Figure 3 we can see the STORAGE_INFO_TRACK_INFO_type data structure decoded by mbLog. In
this example the item track_no is not available and therefore it is set to not to present. In addition,
the above explained mappings for time and has_cover have been highlighted to illustrate their
usage. A more detailed introduction to the capabilities of mbLog can be found in another
publication of this series of white papers [mbLog Logging and Diagnosis Tool].

Definition of Services
The embenatics foundation layer software uses services as communication objects and transport
medium of above defined data type elements. Services are declared and grouped in MBID
documents to form interface definitions and act as the functional access points for inter-process
communication among threads that implement these interfaces. More information on inter-process
communication can be found in another publication of this series of white papers [mbLay Inter-
Process Communication Model].
Services are declared in a similar fashion as already briefly explained for data types. There are,
however, some particular differences that are highlighted in this section of the document. We take a
closer look at the MBID dedicated to the Renderer Unit that has been implemented by the
RENDERER thread as shown in Figure 2, the renderer_control.mbid interface. Its main purpose is
to control and supervise the music to be played by the MP3 device. Simple services like start, stop,
pause and resume a playing track have been defined as shown below.

// pause current track
SERVICE pause NON_BLOCKING {};
// resume playing current track
SERVICE resume NON_BLOCKING {};
// start playing track from playlist
SERVICE start NON_BLOCKING {

// track id to be played
PARAM TRACK_ID>common_types.mbid< track_id @TRACK_ID>common_types.mbid<;

};

Revision 1.2.0 Page 9 of 14

http://embenatics.com/files/white_paper_mblay_inter_process_communication_model.pdf
http://embenatics.com/files/white_paper_mblay_inter_process_communication_model.pdf
http://embenatics.com/files/white_paper_mblog_logging_and_diagnosis_tool.pdf

WHITE PAPERembenatics Interface Description

// stop playing current track
SERVICE stop NON_BLOCKING {};

What we can see in this example is that all services are declared by the keyword SERVICE followed
by the name of the service itself. The services pause, resume and stop have been reduced to the
simplest command without parameter or result. This is in contrast with the start service which has
a parameter that passes the track_id that should be played by the Renderer Unit. In addition, the
type TRACK_ID has been imported from another MBID called common_types.mbid and has been
mapped to TRACK_ID of the same imported MBID.
As stated above, these services are used for inter-process communication among threads that
implement the respective interfaces. To control the thread synchronization when accessing the
services of an interface, some keywords are provided to categorize the service mode. In the example
above, the keyword NON_BLOCKING is used which implies that a call to this service will return
immediately without waiting for completion by the hosting process. These kinds of services can be
seen as shot and forget triggers.
Another example for a service of this MBID is get_volume, which provides the current volume
setting.

// get volume
SERVICE get_volume BLOCKING {

// returns actual volume level
RESULT U8F >mb_types.mbid< volume@VOLUME_MAP;

};

Here we see the definition of a service return value that is defined by the keyword RESULT. Due to
the nature of this service, we have to wait for the output of this request. The service mode is set to
BLOCKING, which means that the caller has to wait until the result can be provided by the called
process. The service modes can be declared globally for a complete MBID or individually for each
service as shown in the examples above.
Finally, we take a look at a more complex service that has parameters and a result and that will also
utilize the cover data types that we have defined earlier in this document. The example service has
been taken from the storage_info.mbid that is implemented by the Storage Unit. Here we have
declared a service to get the cover for a music track, so that it can be displayed by the UI Unit. As we
have seen, when defining the different data types that hold the cover data, there are different sizes
of covers and it is possible to request parts of the cover data for bandwidth optimization. Therefore
our service needs a set of parameters that help to customize the request for cover data of a music
track. As a result we will get a pointer to the requested cover data contained in a
STORAGE_INFO_COVER_DATA_type.

// get album cover data
SERVICE get_cover {

// track identifier
PARAM TRACK_ID>common_types.mbid< track_id;
// requested cover size
PARAM U8F>mb_types.mbid< size @COVER_SIZE;
// requested rows of cover
PARAM U8F>mb_types.mbid< rows;
// requested offset of rows
PARAM U8F>mb_types.mbid< offset;
// return the cover data for the requested size
RESULT COVER_DATA * cover_data;

Revision 1.2.0 Page 10 of 14

WHITE PAPERembenatics Interface Description

};
The following figure shows a decoded example log for a call of the get_cover service from the UI
Unit to the Storage Unit. This will also show the STORAGE_INFO_COVER_DATA_type union in use that
was previously explained in more detail.

 Figure 4 Decoded Service Call Example

The generator mbGen will generate all necessary tables and structures that are needed to support
the inter-process communication via service calls. In addition, the programmer will get a framework

Revision 1.2.0 Page 11 of 14

WHITE PAPERembenatics Interface Description

of template files that he/she could use to fill in the actual code to bring these services to life for a
running system. From there on inter-process communication is as simple as a standard function call.

Using the IDL Editor mbEdit
The embenatics tool suite supports the developer of interface descriptions by providing a dedicated
editor for that purpose called mbEdit. With mbEdit projects can be created to structure the use and
visibility of MBID files in a system. Syntax highlighting as well as context-sensitive editing support
and text completion assist the user to define data structures, types and services. All items of an
MBID are grouped in different tabs for a better overview and structure of the document. MBIDs that
belong to the same project provide their declared types and definitions for reuse while defining new
interface descriptions.
Below is a screenshot of mbEdit showing the editing process for the MP3 Player example. In the
upper left corner is the project explorer section, showing all projects in the workspace and the files
that are part of that project. To the right is the editing space with the numerous tabs for the
different elements of an MBID file. The setting shows the context-sensitive text completion dialog,
where the user can select one of several provided suggestions. The lower left shows an overview of
all elements contained in the currently active MBID file.

Revision 1.2.0 Page 12 of 14

WHITE PAPERembenatics Interface Description

Figure 5 mbEdit Screenshot

Besides the interface description editing mbEdit also supports the system description editing, which
is described in more details in another publication of this series of whitepapers [embenatics System
Description].

Conclusion
Interface descriptions are the basis for inter-process communication when using the embenatics
foundation layer software. The documents, so called MBIDs, are used to declare definitions, data
types and services, by using a dedicated interface description language IDL. Based on the set of
MBID documents that define the communication interfaces of a system or subsystem, the generator
tool mbGen will generate all required output documents, like header and stub files, as well as tables
and system code, that is needed to fulfil the needs of seamless inter-process communications.
Besides the communication aspect, data types and structures can also be defined for internal data
hosting objectives with the benefit to tracing and accessing such types from outside the system.

The developer will be supported by the embenatics tool suite that provides a powerful editor for
interface and system description documents, as well as the target logger tool mbLog for diagnostic
and test purposes of the running system.

Revision 1.2.0 Page 13 of 14

http://embenatics.com/files/white_paper_embenatics_system_description.pdf
http://embenatics.com/files/white_paper_embenatics_system_description.pdf

WHITE PAPERembenatics Interface Description

About Us
embenatics is a new company that entered the market in 2010. Our focus is on embedded software
development; as such we offer a software foundation layer and tool suite that supports your
development team in designing embedded software in an efficient, portable and maintainable way.
Based on our wide and varied experience in embedded systems design and development, we know
that future product requirements are hard to predict. Our goal is, therefore, to provide you with our
technology to make the design of your products as flexible and adaptable as possible. Our approach
allows your company to concentrate on the core competencies that differentiate your valuable
product from those of your competitors.

Before embenatics was founded, we worked with well-known international companies over two
decades and gained valuable experience in the embedded software business. While working as
software developers and architects, we encountered the various challenges of the embedded
software development life cycle. This wide range of experiences is the backbone of the software
foundation products that are offered by embenatics.

Our business philosophy is to establish a close and trustful relationship with our customers in order
to successfully promote and support projects over a long time period. For further information please
contact

Joachim Pilz
Beerenstraße 29

14163 Berlin

info@embenatics.com
www.embenatics.com

Phone +49 30 26 34 75 28
Mobile +49 176 96 98 46 07

Revision 1.2.0 Page 14 of 14

http://www.embenatics.com/

